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A solution of decaying two-dimensional turbulence a t  large Reynolds number is 
analysed by means of an automated vortex census. The census identifies the flow 
structures which approximately conform to the idealized shape of an isolated, 
coherent vortex. It also determines vortex characteristics, such as amplitude, size, 
radial profile, and deformation from the ideal axisymmetric shape. The distributions 
of these characteristics within the vortex population are examined, as are their time 
evolutions. Interpretation of these distributions is made with reference to both the 
random initial conditions for the solution and the dynamical processes of vortex 
emergence, survival, and interaction. 

1. Introduction 
In recent years numerical integrations of fluid equations a t  high Reynolds number 

have yielded solutions with highly structured flow fields in many different physical 
situations generally characterized as turbulent. One can marvel a t  this manifestation 
of ‘order within disorder ’ and be fascinated both by the beauty of the patt,erns and 
by the challenge such a phenomenon presents to dynamical theory. 

In a general conceptual framework, we are concerned with many issues related to 
these so-called ‘coherent structures ’ or ‘coherent vortices ’ in turbulence : the 
circumstances of their occurrence ; their characte,ristic spatial structure ; the 
statistical distribution of their properties (abundance, amplitude, size, shape) and its 
time evolution ; the dynamical processes occurring to individual vortices in isolation 
and among a few neighbouring vortices ; and the aggregate dynamical behaviour of 
structured turbulence. 

These topics have been most extensively investigated for two-dimensional 
turbulence. Two-dimensional turbulence is of interest both because it is relatively 
accessible to computation since it is of lower dimensionality and because it is believed 
to be an apt paradigm for anisotropic turbulence in three dimensions under 
conducive circumstances, such as those for planetary-scale flows (McWilliams 1983). 
There is a long history of numerical solutions for two-dimensional turbulence, 
beginning with Lilly (1969). More recently (McWilliams, 1984, 1990b; Brachet, 
Meneguzzi & Sulem 1986; Brachet et al. 1988; Benzi et al. 1986; Benzi, Patarnello & 
Santangelo 1988; Babiano et al. 1987; Santangelo, Benzi & Legras 1990), i t  has 
become apparent that  coherent vortices develop spontaneously under all cir- 
cumstances where advective dynamics are dominant (i.e. where forcing and 
dissipation are not too strong and where lateral boundaries do not excessively 
constrain the flow), although there are strong indications of this phenomenon in 
many of the earlier studies as well (e.g. Fornberg 1978; Basdevant et al. 1981). 

From these solutions, we know that the characteristic vortex shape is an 
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axisymmetric vorticity pattern with monotonic radial decrease away from a central 
extremum (i.e. a vorticity monopole). About this underlying monopole pattern, there 
also occur transient deformations from axisymmetry and transient vortex aggre- 
gations (into dipoles or tripoles), as well as rarer, but more substantial deformations 
associated with vortex creation and destruction. 

Many dynamical processes have been identified as important for coherent vortices 
in two-dimensional turbulence : among these are amplitude decay and lateral 
spreading through viscous diffusion ; limitations on the class of stable vortex shapes 
set by barotropic instability (e.g. Rayleigh 1880, and the more recent analysis by 
Dritschel 1 9 8 8 ~ )  ; translation through mutual advection (e.g. Batchelor 1967, 
p. 530) ; rotation of azimuthal asymmetries (e.g. Lamb 1932, pp. 231-232) ; defor- 
mation and enhanced dissipation, possibly to the extent of destroying the vortex, in 
response to a strain field (e.g. Moore & Saffman 1971 ; Kida 1981) ; axisymmetrization 
of an isolated vorticity patch (i.e. a region with a dominant sign in the vorticity field; 
e.g. Melander, McWilliams & Zabusky 1987) ; merger of like-sign vortices (e.g. 
Christiansen & Zabusky 1973) ; and aggregation of opposite-sign vorticity extrema 
into apparently stable, dipole (e.g. Batchelor 1967, p. 535) and tripole (e.g. Leith 
1984) configurations. Each of these processes has been investigated under idealized 
circumstances, with varying degrees of completeness in theoretical understanding, 
but this literature is much too extensive to survey here. It can be approached either 
through the references in the numerical studies cited above or in the survey of 
McWilliams (1990a). 

As yet there has been relatively little quantitative measurement of the properties 
specific to the coherent vortices in turbulence, as opposed to more generic (and 
traditional) flow descriptors such as Fourier spectra and low-order statistical 
moments of the velocity and vorticity fields. On the other hand, from visualization 
of these fields (especially vorticity) in numerical solutions, interesting and apt 
descriptions of vortex properties have been made by the investigators listed above, 
but mostly these descriptions have been qualitative and subjective in nature. For 
example, it has been noted that vortices occur with wide ranges in size, amplitude, 
and radial profile, and that the particular property distributions of the emergent 
vortices are strongly influenced by the initial conditions or forcing (t,his is further 
discussed in 9 7). However, largely independent of the emergent property dis- 
tributions, there are subsequent evolutionary tendencies towards fewer, more widely 
separated vortices, a greater rate of decrease in the number of weaker vortices 
compared to the rate for stronger vortices, a decay of the amplitude of vorticity 
extrema, a growth in vortex size, and a decreasing degree of deformation from 
axisymmetry among the surviving vortices. 

At present there is no proper theory for the aggregate dynamics of coherent 
vortices. It is, however, clear that their presence does strongly influence two- 
dimensional turbulent cascade rates : the rates of energy transfer to larger spatial 
scales and of enstrophy transfer to smaller scales, where it is dissipated, are reduced 
through the capture and retention of vorticity in the coherent vortices on 
intermediate scales (Basdevant et al. 1981 ; Herring & McWilliams 1985 ; McWilliams 
1990a, b) .  

The purposes of this paper are to present a methodology for the quantitative 
analysis of vortex properties, to illustrate i t  for a particular solution of weakly 
decaying two-dimensional turbulence, and to indicate in a qualitative fashion the 
associations between these properties and vortex dynamics. I view this type of 
analysis of vortex properties as a probably necessary step towards developing a 
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satisfactory theory or minimal model of the aggregate dynamics of structured 
turbulence. 

2. The solution 
The analysis of vortex properties will be made on a particular numerical solution 

of two-dimensional turbulence in a high-Reynolds-number regime of weakly decaying 
energy. Here we briefly describe the solution. (Much more extensive descriptions of 
similar solutions are in the numerical papers cited in $ 1  .) 

The model is the barotropic vorticity equation with hyperviscous diffusion, which 
is a simple, commonly used parameterization for subgrid-scale vorticity mixing : 

& + J(9, <) = - vV2V2<. (1)  

Here < is the vorticity, and q? is the stream function. Horizontal velocities u, v are 
related to them by 

?&=-I/? y, v = q?x, 5 = vx-uy  = vzg. (2) 

The spatial differential operators J and V2 are the horizontal Jacobian and 
Laplacian, respectively. The domain is a square of dimension 2n, and the boundary 
conditions are periodicity. 

The initial conditions are a random-phase realization from a kinetic energy 
spectrum of moderate bandwidth. We define the spectrum E ( k )  in relation to the 
total energy such that 

1 1  
2 4n2 

E = - - JJdx dy(U2 + v2) 

where k is the horizontal wavenumber modulus. The summation in (3) is the discrete 
approximation to a wavenumber integral, with the differential dk  = 1. This 
particular solution was obtained for the initial spectrum shape 

an amplitude normalization E(t = 0) = 0.5, a spectrum peak a t  k,  = 30, a 
hyperviscosity v = 3.5 x a spatial grid resolution ds = 2n/450 = 0.014, and a 
temporal resolution dt = 0.0025. The value of k, is large compared to kmin = 1 so that 
a large population of vortices emerges in the solution; furthermore, k, is small 
compared with k,, z 225, so that a hyperdiffusion time, t ,  = ilk: v = 350, is long 
compared with an initial eddy circulation (i.e. advective) time, t, = Z( t  = O)-i = 
0.021, where Z is the enstrophy (i.e. spatially averaged vorticity variance). The 
model uses a dealiassed spectral method which is conservative of both E and Z when 
v = 0 and dt+O (Orszag 1971); the time integration is by a standard leapfrog 
scheme. 

By now many of the solution properties are familiar. In  table 1, we can see that 
the energy decay is slight (because v is small), yet the enstrophy decay is substantial. 
The time of maximum enstrophy dissipation is t x 0.25, which is approximately a 
strain-enhanced enstrophy dissipation time, t, = t,  In (t,/t,) (NB this is a variant, for 
hyperviscosity, of the result discussed by Lesieur 1987, p. 194). 
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t E z 
0 0.500 2229 
0.1 0.495 2027 
0.2 0.489 1745 
0.4 0.479 1274 
1 .o 0.464 605 
2.0 0.457 315 
4.0 0.453 184 

10.0 0.449 104 
20.0 0.447 72 
40.0 0.444 53 

k, 
67 
79 
81 
77 
61 
44 
32 
24 
15 
11  

TABLE 1. Solution properties 

Ku 

3.0 
3.2 
3.5 
4.0 
6.4 

12.1 
20.6 
33.0 
43.2 
50.0 

Table 1 also includes the vorticity centroid wavenumber, 

k - k  
- C k2E(E) ' 

k 

which initially increases as enstrophy density (i.e. k2E(k))  is transferred to smaller 
scales and which subsequently, after the time of maximum dissipation, decreases as 
enstrophy is dissipated at  small scales and the peak in E ( k )  shifts towards larger 
scales. Finally, the vorticity kurtosis 

grows steadily with time (table l ) ,  which indicates an increasing spatial intermittency 
in thc vorticity field due to the emergence of and increasing dominance of the 
solution by coherent vortices. The vortices are evident in figure 1 .  

3. Rationale for an automated vortex census 
The objective is to analyse numerical solutions of two-dimensional turbulence in 

order to identify the vortices present and then to measure their properties. The first 
of these tasks is one of pattern recognition or feature eduction; the second is an 
important analysis technique for flows dominated by coherent structures. 

The identification or selection criteria are based upon a posited archetypal vortex 
structure : the vorticity field has a single sign in a simply connected region about a 
single horizontal extremum of significant amplitude (compared to, say, the square 
root of the enstrophy) ; furthermore, within this region the pattern is axisymmetric 
about the extremum. This archetype derives from experience with many solutions of 
this type, and a vortex with this shape is a steady, stable solution for inviscid, two- 
dimensional flow in an unbounded domain. (The assertion of axisymmetry would 
have to he reconsidered for a horizontally non-isotropic flow environment, c.g. with 
a large-scale shear or a spatially variablc Coriolis frequency.) Candidate vorticcs 
which deviate excessively from this archetypal structure are rejected. 

This simple and spatially smooth vortex shape develops through the process of 
axisymmetrization of a vorticity patch, which can ensue from either irregular initial 
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FIGURE 1. &,y) a t  (a) t = 5 and ( b )  20. The contour interval is 10. Positive contours are solid, 
and negative contours are dashed. The zero contour is omitted. 
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conditions, t h e  subsidence of a deforming strain field associated with neighbouring 
vorticity patches, or the onset of a merger event. Axisymmetrization, however, is 
initiated (on a time t,) by making the patch less smooth with increasing vorticity 
gradients and elongating vorticity filaments, and smoothness is achieved only 
through diffusion of the filaments and dissipation of their enstrophy on a time t, 
(Melander et al. 1987). Thus our selection criterion based upon smooth vortex shapes 
is inapt for an axisymmetrizing patch during a time interval between t ,  and t , ,  whose 
ratio is the logarithm of a Reynolds number Re ( =t,/ tc).  I n  all present turbulence 
solutions containing many vortices (including the one analysed here), the achievable 
spatial resolution sufficiently limits the value of Re so that this interval is not too 
long, and the rejection of a candidate vortex during a non-smooth stage of 
axisymmetrization is not a serious deficiency of the selection criterion. However, in 
a hypothetical solution with very large Re, this interval of non-smoothness will be 
very long, but the non-smoothness is transferred to scales small compared with the 
patch size within a few t,, and subsequently we expect i t  to have no dynamical 
influence on either the local behaviour of the vortex or the global dynamics of the 
energetic scales of motion. Thus, the present selection criterion could be generalized 
for very large Re by being applied to the low-pass-filtered vorticity field on scales 
comparable with the patch size, but this step is unnecessary for present solutions. 

It would be possible to define a less stringent selection criterion. One definition, 
used by Babiano et al. (1987) and Benzi et al. (1988)) is all regions with vorticity 
above a small threshold amplitude. Another, due to  Weiss (1981) and used by 
MeWilliams (1984), Brachet et al. (1988), and Benzi et al. (1988), is all regions with 
a negative sign for the determinant of the velocity gradient. Both of these 
alternatives are simpler to  implement than what is proposed in 94, and the latter one 
has a plausible dynamical basis. At intermediate times in the solutions, hundreds of 
t , ( O )  units, when the vortices are well developed and widely separated on average, all 
of these selection criteria yield substantially the same set of vortices. However, a t  
earlier times, these simpler alternative criteria would select either most of the domain 
or about half of it, respectively, and this would be highly misleading with respect to 
the dynamical behaviour we associate with coherent vortices. Thus, we prefer more 
discriminating selection criteria. 

It also would be possible to define more stringent selection criteria by testing for 
additional characteristics. Among the more plausible possibilities are the following : 
(i) The usual structure for an isolated vortex is monotonic decrease of vorticity with 
radial distance from a single-point extremum. An argument against testing for this 
condition is that i t  is temporarily violated during a vortex merger event before 
axisymmetrization returns the profile to  monotonicity. (ii) Coherent vortices tend to 
become spatially isolated as the vorticity field between vortices is depleted by a 
strain-induced cascade (scale transfer) to dissipation and as the number of vortices 
decreases through non-conservative straining and merger interactions. However, 
isolation is not an attractive selection criterion since close approaches do 
intermittently occur through mutual advection among vortices, even when sparse. 
(iii) Temporal history aids a human analyst in identifying the coherence of a vortex 
(i.e. time continuity of shape, longevity, dynamical plausibility of events). However, 
a determination of vortex structure would seem likely to precede an understanding 
of vortex dynamics, and so the former should not be excessively biased by the latter 
in a first quantitative census. Alternatively stated, a census obtained without 
dynamical prejudice allows uncontaminated inferences about dynamical processes. 

The essential characteristics of coherence for vortices in turbulence are the 



The vortices of two-dimensional turbulence 367 

persistence and recurrence of a particular flow pattern (an axisymmetric vorticity 
monopole) and the longevity of individual vortices compared to the advective 
evolution times t, and t,. In  the census selection criteria, we test for the spatial 
pattern, but not the longevity. 

Thus, there is an inherent tension in the selection process. At one extreme, strict 
and narrow selection criteria, applied with tight quantitative tolerances between the 
solution and the archetypal structure, will assure the analyst that only the best 
vortices are selected. However, many coherent vortices exhibit transient departures 
from the archetype and thus would be falsely rejected by excessively strict criteria. 
Furthermore, there is a potential circularity in an overly strict selection analysis : the 
only information in the outcome would be the number of vortices present, while all 
their properties would be implicit in their selection criteria. At the other extreme, of 
course, too few selection criteria, too loosely applied, would select flow structures 
which a subjective analyst would reject, and inferences about coherent vortex 
properties would be contaminated by incoherence. 

No unambiguous resolution of this tension can be achieved. The particular 
selection criteria stated above, applied with the tolerances described below, are thus 
a compromise chosen on the basis of many case studies. Their justification lies in 
successfully identifying the same coherent vortices as does the human analyst, with 
the added benefit of explicit criteria consistently applied. I have found the census to 
be quite successful, in this sense, for strong vortices well after their emergence from 
random initial conditions, except during some close interactions with strong 
structural deformations and a high probability of imminent vortex disappearance. 
On the other hand, weak or incipient vortices are often far from the archetype, and 
the human analyst can find such selection decisions quite uncertain. The reader must 
judge the aptness of the census from the a priori plausibility of its selection criteria 
($4) and the a posteriori consistency of its results (985 and 6). 

4. Vortex selection procedure 
Here we specify the procedure to identify vortices in a two-dimensional gridded 

vorticity field [ ( r t ,  y )  at a particular time. 
A. Identify extrema Vortices are required to have a two-dimensional extremum in 
vorticity as their centre, with an amplitude above a specified threshold value. 

Procedure Determine the amplitudes Cn and positions (xa, y n ) ,  n = 1,  . . . ,N, ,  for 
all extrema above a threshold value Cmin. The extremum test further requires 
that a candidate extremum have the largest magnitude within a local square of 
dimension L,. 

Comments A minimum value for L, is 2ds, where ds is the horizontal grid spacing. 
I n  practice, L, is taken to be 4ds (=  0.0558 here), since extrema within two grid 
points of each other are invariably determined to be part of the same vortex by the 
additional procedures below. The value for cmin is taken to be a small fraction of the 
global vorticity extrema and is held constant in time, even though the latter 
decreases by a little more than a factor of two over the approximately 1000t, units 
of integration (see figure 7 below). For decreasing values of Cmin, a rapidly increasing 
fraction of the weakest extremum is rejected as vortices by the tests below ; thus the 
census is not very sensitive to the value of Cmin. For the present example, with a 
global vorticity extremum of max 161 = 212 a t  t = 0, we choose cmin = 10. 
B. Identity interior and boundary regions Vortices have a simply connected region 
with vorticity of the same sign as its central extremum. 
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Procedure Search away from the central extremum in the +x-direction until a 
vortex boundary is encountered. This is defined as the last point along the search line 
such that 

Y 
b - 3 A .  

Cn 
(7)  

Prom that first boundary point, we declare + y as the current search direction and 
trace the vortex boundary along horizontal grid lines in a counterclockwise direction 
until returning to the first point (a candidate vortex is rejected if the boundary is not 
a closed curve). The tracing algorithm is the following: 

(i) From the current boundary point, test whether the next grid point 90" to the 
right of the current search direction satisfies ( 7 ) ;  if so, then rotate the current search 
direction 90" to  the right, accept this grid point as the new current boundary point, 
and return to the beginning of (i) ;  if not, then go to (ii). 

(i i)  Test whether the next grid point in the current search direction satisfies (7) ; 
if not, then rotate the search direction by 90" to the left and return to the beginning 
of ( i i )  ; if so, then accept this grid point as the new current boundary point, and return 
to the beginning of (i). 
We denote the ordered set of boundary grid points as SV, ; note that a grid point can 
enter twice into SV, if it lies along a protrusion of width Ids where condition (7)  is 
satisfied. The vortex interior V, is the set of grid points contained inside or on the 
closed curve defined by SV,. If any grid point within V, fails to satisfy (7),  the 
candidate vortex is rejected. 

Comments If A is chosen too large, then a substantial portion of the vortex is not 
included in V,. If A is chosen too small, then the identified boundary is likely to  be 
much more distorted from circular than are typical vorticity contours in the vortex 
interior. A = 0.2 has been found to be a satisfactory value which avoids both perils. 
C. Eliminate redundancy All independent vortices are spatially separate. 

Procedure If any extremum lies within the interior set V, of another vortex with 
a stronger extremum, the former is discarded as an independent vortex. 

Comments This restriction is usually an appropriate one. However, an exception 
occurs during a vortex merger event, after the initially separate vortices have 
become entangled and before the final axisymmetrization is complete. However, 
because mergers are completed rapidly in the present solutions (see $3) ,  and involve 
only a small fraction of the vortex population a t  a time, only a modest underestimate 
of the vortex population is made by excluding this situation. 
D. Test vortex shape The vortex interior and boundary should not depart excessively 
from axisymmetry. 

Procedure For each candidate vortex the following shape properties are calculated : 

C = C ds, 

A = Ed?, 
SV 

V 

C ds2w(xi-XXni) 
&Xi = Ir C ds2 w 

V 

C ds2 W ( Z ~  - ~ , i )  (xj - - ~ , j )  

M..= C ds2 w 22 

V 
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These quantities are, respectively, the circumference, the area, the first spatial 
moment or centroid displacement, and the second-moment matrix. i and j are 
horizontal coordinate indices (i.e. (xl, x 2 )  = (2,  y)), and w is a weighting factor equal 
to either 1 or t;. Mij  has positive eigenvalues A, 2 A,. 

Using these quantities, the following tests are done: 

C 6 Cmax, (12) 

A 4  G Amax,  (13) 

(14) r = ( ~ / n ) i  > rmin, 

E = (2- 1 y G Emax. 

Candidate vortices failing any of these tests are rejected. 
Comments Tests (12), (13), and (14) are imposed primarily for computational 

reasons. Tests (12) and (13) limit the size of the candidate vortex to a modest fraction 
of the domain size. This limits the computer memory required to conduct the census 
and, if the tests are failed, avoids the need to do the subsequent tests. As long as the 
bounds are not too stringent, (12) and (13) do not eliminate any vortices the human 
analyst would accept. For the present census, we adopt the values Cm, = x (8n) = 
6.28 and Am, = [0.1 x (2n)j2 = 0.395. The radius test (14) is intended to  ensure that 
spatial resolution is not grossly inadequate for any candidate vortex. We therefore 
choose rmin = ds = 0.014, and find that this test is rarely failed except during the 
early period of vortex emergence. 

Tests (15), (16), and (17) are all limitations on departures from axisymmetry 
(circularity of vorticity contours). The parameter R in (15) is one for a circular 
boundary. It is larger than one for all other shapes, and it increases with boundary 
shape complexity. S in (16) is the displacement of the vortex centroid from its centre 
normalized by its radius; it has the value zero for an axisymmetric, monotonic 
vorticity profile. The eigenvalues of M are equal to one quarter times the squares of 
the major and minor axes for an elliptical fit to SV with w = 1. Hence, E in (17) is the 
ellipticity of the vortex; it is zero for a circle and positive otherwise. Tests (16) and 
(17) are made with both choices of w, although w = 1 usually provides the more 
severe test because of radially decreasing vorticity profiles. (For the vortex 
properties reported below, w = 1 unless stated otherwise.) We choose the values 
R,,, = 1.75, S,,, = 0.35, and emax = 2.5.  These values are somewhat conservative, in 
that  they exclude a few significantly distorted vortices which the human analyst 
might accept, particularly where the distortion is known a posteriori to be only 
transient. The fundamental basis for these choices is an empirical one: they 
approximately represent the boundary that a human analyst would draw between 
distorted vortices and other, incoherent structures in the vorticity field, as 
determined by application of these tests to many examples of both. Fortunately, the 
sensitivity to this boundary is not too great : within a broad range about these values 
of (Rmax,6max,~m,,,), the number of vortices at the margin of acceptance is a small 
fraction of the total population. 
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FIGURE 2. For caption see facing page. 
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After all this, a set of N ,  coherent vortices has been selected, and many of their 
important properties have been determined. 

5. Life history of a single vortex 
Before examining the vortex population as a whole, we apply the vortex property 

measures to the life history of a single vortex. It is more interesting to choose a 
vortex that survives for the entire length of the integration (i.e. until t = 40) than one 
which suffers an early destruction. We choose the vortex with the strongest vorticity 
extremum a t  t = 40. It can be traced continuously backwards in time to an 
extremum which is the 28th strongest in the random initial conditions. It occupies 
an intermediate rank at times in between. Because it is always among the strongest 
vortices, i t  has relatively weaker deformations and less vulnerability to destruction 
in its close interactions with other vortices. If a more typical vortex life history were 
followed, i t  would likely be more tumultuous. 

The trajectory of the vortex extremum is shown in figure 2, along with indications 
of its major interaction events, the times a t  which the selection procedure rejects it, 
and representative plots of its evolving shape. It can also be seen in figure 1, where 
its coordinates are (3.36,0.84) a t  t = 5 and (6.23,3.46) a t  t = 20. (NB the coordinates 
span [0, 2x1). The census is applied at all unit times between 0 and 40, as well as at 
t = 0.5 for better early resolution. 

The selection procedure rejects this vortex a t  t = 0 because its normalized centroid 
displac,ement is 6 = 0.41, which is slightly in excess of S,,,. On the other hand, we 
see in the insert panel in figure 2 that only a modest evolution of the vorticity pattern 
through the axisymmetrization process would make i t  a good vortex ; indeed, by t = 
0.5 the selection procedure accepts it. Thereafter, i t  is selected as a vortex for all 
times except three (i.e. t = 8 ,  13, and 24) when it is in the midst of mergers with other 
vortices (NB the t = 8 merger is shown in an insert panel in figure 2)  and it is rejected 
for either excessive E or 6 or for lack of a simply connected vortex interior V,. 

During the lifetime of this vortex, it undergoes four mergers with other vortices 
and three major straining interactions, during which it is appreciably deformed and 
its (weaker) partner is deformed to a greater degree. (An example of a minor straining 
interaction can be seen in figure l ( b ) ,  near (zn,y,) = (6.23,3.46), where the quite 
weak partner is being destroyed by the strain field on the periphery of the vortex.) 
Interaction events become less frequent as the vortex population becomes sparser. 

Histories of some vortex properties are shown in figure 3. The amplitude tends to 
decrease with time (figure 3a) ,  more rapidly early and less rapidly later. This is 
because of the lessening of the frictional decay rate, owing both to the systematic 
growth in size of the vortex (figure 3b) and to its generally decreasing deformation 
(figure 3d)  as the population density declines and close encounters become rarer. The 
largest decreases in amplitude occur during merger events. Two instances of 
temporary and slight amplitude growth also occur during mergers; they are due 
either to  numerical error in calculating the Lagrangian conservation of vorticity (i.e. 

FIGURE 2 .  Trajectory of a single vortex. Positions of the extremum are plotted at unit times, and 
times are labelled every At = 5.  A triangle on the trajectory marks a time when the selection 
procedure rejects the vortex. Events of close vortex interaction are marked beside the trajectory : 
either merger (M) or strong straining deformation (S). In  addition, contour plots of vorticity appear 
as insert panels at  selected times in sub-domains of lateral dimension 0.279 centred on the vortex 
extremum (i.e. there is a scale magnification of a factor of 5 relative to the trajectory plot) ; the 
contour interval is 24 a t  t = 0,  12 at t = 2.5,  and 6 thereafter. 



372 J .  C .  McWilliams 

r 

l M S  M , M  S ,  M , s ,  
0 

I I 1 1 1  I 1  

(4 
4 

E 

0 10 20 30 40 0 10 20 30 40 
t 1 

FIGURE 3. Vortex properties of the single vortex in figure 2 :  (a,) amplitude &, (6) radius r ,  ( c )  
circulation r, and ( d )  ellipticity E .  On the time axes are marked the same interaction events as in 
figure 2. ‘ 2 ’  indicates that the property value is missing because the vortex is rejected by the 
selection procedure (NB some properties are available even for rejected vortices, and which ones 
depends upon the reason for rejection). 

the left-hand-side of (1)) or to  the possibility of growth in a vorticity extremum 
permitted by hyperviscous diffusion ; both effects are more likely where vorticity 
gradients are especially large, and, in my judgement, these non-physical effects are 
unimportant in the present solution. The straining events show only a modest 
influence on vortex amplitude here, since, for this vortex, the strain amplitude is 
never as large as the vorticity in the core, and consequently vorticity gradients are 
only moderately increased from the axisymmetric configuration. However, one 
expects cnhanccd amplitude decay in a strong enough straining event. 

Vortex size (figure 3 b )  shows relatively little change except during mergers, when 
it increases stepwise, as substantial fractions of the areas of the vortex partners 
combine. Between mergers, the radius usually decreases slightly, to a somewhat 
greater degree during modest straining events. This tendency is opposite to the effect 
of diffusion (see the Appendix) ; it  can occur by the casting off of vorticity filaments 
in the axisymmetrization process during the later phase of a merger, and it can occur 
through the stripping of weak vorticity patches from the periphery of a vortex due 
to strain from neighbouring vortices (e.g. Dritschel 1988 b ) .  Similar behaviour is seen 
in the vortex circulation, 

r = I z Cds21, 
V 

but to an amplified degree (figure 3 c ) .  Thus, we conclude that diffusion by itself has 
relatively little influence on the growth in vortex size, although, of course, it makes 
an essential contribution to the return to smoothness following straining events. 

Vortex deformations are highly variable in time (e.g. E in figure 3 d )  : deformation 
is strain induced, the strain field decays as inverse distance squared away from a 
vortex of finite circulation, and the nearest neighbour separation distance is highly 
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variable in vortex motions owing to mutual advection. Overall, vortex deformations 
decrease with time as average separation distance increases, although we see that 
substantial averaging is required to educe this behaviour (see figure 10). Sharp peaks 
in deformation occur during close interactions, most strongly during merger but' also 
during straining events. Other measures of deformation, 6 and R, show behaviour 
similar to E .  

6. Vortex properties 
Here we examine properties of the population of selected vortices as a whole. The 

analysis is done for all unit times, 0 d t d 40, plus t = 0.5 and 2.5 for better resolution 
during emergence (the results for t = 1.5 were lost by accident and not judged worth 
the effort of recalculation). 

The selection procedure yields N,  vortices from among N ,  extrema. The selection 
ratio Nv/Ne is plotted in figure 4. At t = 0 this ratio is quite small, and shortly 
thereafter, around the time of maximum dissipation hence maximum vorticity 
deformation, it becomes even smaller, with a value of 0.07. It is reassuring that the 
selection procedure accepts only a very small fraction of the extrema a t  early times 
when coherent vortices are not manifest. On the other hand, it is difficult, if not 
impossible, to say what the correct fraction should be during the early stages of 
vortex emergence. Here are two arguments against its being zero : if selection is by any 
shape criterion, then by chance that shape will occasionally occur in random initial 
conditions ; in the present solution almost all coherent vortices can be traced 
continuously backwards in time to an initial extremum, so that one can say that 
vortices are at least latent, and perhaps even nascent, a t  even the earliest times. 

The selection ratio increases with time (figure 4a),  as the vortices increasingly 
dominate the vorticity field and thus the solution. The most rapid increase in N,/N, 
occurs just after t = 3, which is approximately the time by which the vorticity field 
outside the vortices has been significantly depleted through cascade and dissipation. 
At late times the ratio approaches one, which indicates that the selection procedure 
is correctly accepting almost all strong extrema as vortices (see figure 16). Also a t  
late times time-averaging is required to see the systematic evolution of the selection 
ratio because Ne(t)  is highly variable : vorticity filaments and their associated 
extrema are intermittently generated a t  times of close approach and strong mutual 
straining between vortices. At early times this process is neither so intermittent nor 
is it the principal reason for [ extrema. 

The selection ratio also increases with vorticity amplitude (figure 4b) ,  and this is 
increasingly so with time. Stronger vortices are better vortices (i.e. have a shape 
closer to the posited archetype). After vortex emergence, this is principally due to the 
degree to which the axisymmetrization process can better overcome the deforming 
influences of an exterior strain field where the vortex amplitude is larger, although 
i t  is also true that a t  t = 0 the larger extrema have shapes closer to  the archetype as 
well. Note that even a t  late times a small fraction of the extrema with weak 
amplitude are selected ; thus, our analysis is not sensitive to the value of cmin except 
during the period of emergence when there are so many weak extrema. 

By reference to figure 4, one can see the difference between the present selection 
criteria and the simpler threshold criterion (7) (see $3). The two sets of criteria 
become increasingly similar a t  late time and large vortex amplitude, but this 
convergence occurs only gradually and over hundreds of circulation times t,. For 
quite substantial time intervals and amplitude ranges, there are many flow 
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FIGURE 4. Selection ratio for vortices NJN,:  (a) time evolution and ( b )  dependence on vortex 
amplitude cv ( = lc,,l). In (a )  fort < 5, values are plotted for individual times; fort > 5, time-average 
values are plotted for the indicated intervals with error bars equal to the standard deviation 
divided by the square root of the number of individual values (at unit times) in the average. For 
(b )  the vortex populations are partitioned into cv intervals of either 10 (dots) or 30 (asterisk), the 
latter where there are relatively few vortices per amplitude interval. 

structures that are above the vorticity threshold but do not conform to the coherent 
vortex shape criterion. 

The vortex abundance is shown in figure 5. N J t )  steadily declines. After the period 
of emergence, the decline is approximately in the form of a power law, with 
appreciable scatter due to the intermittency of close encounters, which are occasions 
of possible vortex destruction through either merger or straining. The best-fit power- 
law exponent is -0.71 during the interval 5 < t < 40. We can partially interpret this 
by reference to a simple model for population evolution. If vortex size is small 
compared with domain size (most stringently, the total area within vortices is small 
compared to the area of the domain), and if vortex positions are wholly random and 
mutually uncorrelated, and if the probability of a vortex being destroyed is 
proportional to the frequency with which any two vortices lie within some critical 
distance of each other (small compared with the typical separation between vortices), 
then 

This is similar to the model by Chandrasekar (1943) for the evolution of colloid 
particles. Thus, the rate of decline in the vortex population in figure 5 is similar to, 
but appreciably less steep than, the simple model prediction. Perhaps several model 
assumptions are falsely simple, but I suspect the most important discrepancy is that 
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FIGURE 5. Evolution of the vortex population N,. Comparison lines o ~ t - O . ’  and t-’ .O 

are also plotted. 

movement by mutual advection (i.e. point-vortex dynamics) yields close encounters 
less frequently than random motion (e.g. random walks, as in colloids) because the 
mutual advection velocity is perpendicular to  the separation vector between 
vortices; however, this conjecture has yet to be demonstrated. 

We can define a transformed time T ( t )  which is linear in the geometric progression 
of N,(t) .  If we scale it such that Ar = 1 corresponds to a halving of the vortex 
population and choose its origin a t  the onset of the power-law decay regime in figure 
5, then 

is an accurate fit to  the sequence of times, t = 2.5,5.7,13.2,38.5, between which three 
successive halvings of N, occur. In  a solution dominated by coherent vortices, as 
here, r is the time for non-conservative evolution of the vortex population and thus 
of the bulk properties of the solution as a whole (e.g. its spectrum). The form of (20) 
indicates that  this evolution is increasingly slow in the physical time t .  

The population distribution with amplitude is shown in figure 6. The distribution 
of initial extrema is quite broad. The vortex population which emerges from these 
seeds is also quite broad, although the amplitude range becomes narrower with time 
owing to hyperviscous dissipation. During the late stages of emergence (e.g. the t = 
2.5 curve in figure 6), there is a primary population of vortices, whose abundance 
peaks near Cv ( = 1C,J) = 100, plus a secondary population of weak vortices, many of 
which have extrema not present in the initial conditions and which have arisen as 
filaments and fragments from emerging vortices in close interactions with each other. 
(This is an exception to the traceability of vortices backwards in time to initial 
extrema; it is of minor importance in this solution, but it can be more important in 
others - see $7; i t  also is a cause for the slower decay rate of N J t )  before t x 2.5 in 
figure 5.) As time proceeds, we see a general decline in both the abundance and 
amplitude of the main vortex population due to destructive close encounters and 
hyperviscous diffusion. We also see a preferential destruction of weak vortices, in 
both the main and secondary populations, due to the decreasing resistance to 
straining deformations with decreasing vorticity amplitude. 

7( t )  = 1.101nt-0.94 (20) 
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FIGXJRE 6. Amplitude distributions of initial extrema N, ( x ) and selected vortices N, at subsequent 
times (0) .  Vortex amplitudes are grouped into intervals of AL, = 10. Vert,ical line segments 
indicate that no vortices exist outside the indicated amplitude interval. 
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FIGURE 7 .  The maximum Max 6 and average (Cv) vortex amplitudes. 

The maximum vortex amplitude declines steadily (figure 7) .  It has a character 
similar to the amplitude of an individual vortex (figure 3a),  since it is a composite 
of individual vortices, each taking its (brief) turn as the strongest. On the other hand, 
the average amplitude (f;,), where ( * ) denotes the average over the population of 
selected vortices (or some sub-population where specifically stated ; e.g. figure 8 b ) ,  
declines very much more slowly than max 6 after an initial period during emergence 
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FIGURE 8. Average vortex radius ( r )  : (a)  time evolution, and ( b )  dependence on vortex amplitude. 
I n  (a)  the average is over all vortices at a particular time. In (b ) ,  the average is over all vortices 
within the indicated amplitude interval and the time interval 8 < t < 12; 0,  p A<" = 10; x , 20; *, 
40. Error bars are the standard deviation divided by the square root of the number of vortices in 
the average. 

of strong dissipation and creation of weak vortices from interaction fragments. The 
weak decay of (6) is a result of the selective destruction of weaker vortices during 
close interactions, as a balance against the stronger hyperviscous decay of all 
individual vortices. Both amplitude measures in figure 7 decay substantially more 
slowly than the square root of the enstrophy (table i), except at late times. This is 
because the vorticity within vortices is relatively protected against cascade and 
dissipation compared with the vorticity outside vortices. The approximate 
coincidence of the decay rate in all these measures a t  late times is due to the 
exhaustion of almost all vorticity except that within the vortices. 

Vortex size steadily increases, except near the time of maximum dissipation where 
strain-induced filamentation dominates (figure 8 a).  Vortex size can grow because of 
both diffusion and merger. The individual vortex record (figure 3 b )  indicates that the 
latter is the more important mechanism, even though the pattern of step increases 
is lost in the population average. The rate of size growth decreases with time as the 
frequency of close encounters, hence mergers, decreases. Size also increases with 
amplitude (figure 8 b ; the one exception to monotonicity is sampling error due to the 
limited number of vortices present). To some degree this relation is a residual bias 
from the random initial conditions. The shape of <r> (cv) changes only slightly with 
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FIGURE 9. Average vortex circulation (0. Error bprs are equal to the standard deviation 
divided by N; .  

time until quite late in the evolution (i.e. t 5 20). This is an indication that among 
the surviving vortices the growth rates in radius are similar for different amplitudes. 
This in turn is consistent with an amplitude and horizontal-scale independence in the 
non-viscous dynamical processes. At late times, however, ( r )  (cv) steepens 
considerably ; this is because, once weak vortices become relatively rare, the rate of 
encounter and merger between two weak vortices, yielding a larger weak vortex, 
becomes quite small compared with encounters and mergers involving a t  least one 
strong vortex. 

Average vortex circulation also increases with time (figure 9). Its growth ratio for 
a given time interval is approximately the square of the growth ratio for vortex 
radius (figure 8a) .  This is characteristic of merger interactions where growth is by 
accretion, but not of diffusion where r and r grow in quite a different relation (see 
the Appendix). From (18) and figure 8 ( b ) ,  it is obvious that (0 is a strongly 
increasing function of vortex amplitude ; hence this is not plotted here. 

Each of the properties (6), ( r ) ,  and (I") also has an approximate power-law 
form, K ta,  after the initial period of vortex emergence. The best-fit exponents over 
the interval 5 < t < 40 are, respectively, a = -0.09, 0.20, and 0.35. A simple model 
for inviscid merger of equal vortices which conserves all parcels would predict that 
ar = 201, and a< = 0, which is approximately true for the above exponents. (For 
unequal vortices, with fractional losses of area and circulation during merger, there 
is no universal value of a,/a,; so one should not take this model too seriously.) A 
modest influence of diffusion associated with the strong straining and deformation in 
mergers would amend the above relations to a, 5 2a, and -u5 2 0, since r is not 
altered under diffusion (see the Appendix) ; these amended relations match very well 
the above exponents. On the other hand, if the population evolution were only 
through mergers that are wholly conservative of parcels, the total circulation within 
vortices, N ,  (0, would be constant in time. However, from these power-law fits and 
(20), we see that N, (0 K t-0.71+0.35 = K e-0.32T. Thus, the fractional loss of the 
circulation contained within the vortices on a population halving time is 1 - e-0.32 = 
0.27, which indicates that the population evolution occurs through some combination 
of leaky mergers and strain-induced filamentation events. 

Shape distortion from axisymmetry decreases both with time (except before the 
time of maximum dissipation) and with amplitude. This is demonstrated in figure 10 
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FIGURE 10. Average vortex ellipticity (E) as a function of (a) time and (b) amplitude. In (b), 0 ,  
A[" = 10; x , 20; *, 30. Averaging techniques and error bars are the same as for figure 8. 

for ellipticity E ,  but it is true for the other distortion measures as well. The time 
dependence (E(t)) is due to decreasing mutual straining among the vortices. In 
steady solutions of elliptically deformed vortices in a strain field (e.g. Moore & 
Saffman 1971; Kida 1981), the aspect ratio A exceeds one by an amount 
approximately proportional to the strain rate divided by the vorticity amplitude. 
Since strain here is mostly due to distant vortices (except during rare close 
approaches), we can estimate it as proportional to (I') and inversely proportional to 
the square of the typical separation distance between vortices, and this distance 
varies as N;:. Thus, in a power-law fit, as above, we would predict aA x aN + a,- a5 
(= -0.27 from the above exponents). From (17), E = [A(Z+A)]:. Thus, at early times 
when A is typically large, we predict a, 5 aA, and a t  late times when A is close to one, 
we predict a, 2 0 . 5 ~ ~ .  I n  a power-law fit to ( E )  ( t ) ,  there is indeed a noticeable change 
to the exponent with time : during 2.5 < t < 15, ae = -0.34, and during 25 < t < 40, 
a, = -0.15, which are in rough correspondence to the predicted values above (i.e. 
-0.27 and -0.14, respectively). The amplitude dependence (e(&)) in figure lO(b)  
is also consequence of deformation's being a decreasing function of the ratio of external 
strain rate and vortex amplitude. Note that the eventfulness of an individual vortex 
deformation record (figure 3d)  is smoothed out in the population record. 

Finally, we examine the orthogonal component of vortex shape, i.e. the radial 

13 FLM 219 



380 J .  C. MeWilliams 

I I I I I 

I- ‘ 4  

0.01 
0 0.5 1 .o 1.5 2.0 2.5 

(r‘lr)Z 

FIGURE 11. Average radial profile for the best-shaped vortices (see text). The straight line is the 
best-fit Gaussian function, exp [ - a(r ’ / r )* ] ,  with a = 1.56 (also see text). 

profiles of the vortices [(r‘) ,  where r’ is the radial coordinate measured from the 
vortex centre. These profiles are quite variable, as can be seen in figure 1. To educe 
an average profile, we first do a more stringent selection procedure in order to restrict 
the inquiry to vortices that have not recently undergone close encounters and have 
relaxed to axisymmetry. The selection procedure is formally the same as described 
in 54, except the tolerance parameters are tightened to rmin = 0.06, R,,, = 1.25, 
a,,, = 0.1, amax = 0.5. The first of these ensures that at least a modest degree of pro- 
file resolution will be achieved, and the other three ensure that departures from 
axisymmetry will be small. The more stringent selection procedure yields N,(t) 
( <N,(t) )  vortices. This number varies little with time after emergence, with a value 
around 20, as the decline in N, (figure 5 )  approximately balances the decline in 
distortion (figure 10). For each of the stringently selected vortices, an azimuthal 
average is performed within radial intervals of Ar’ = 0.75ds = 0.0105, and then the 
result is normalized by its extremum 6 and interpolated onto a normalized radial 
coordinate r” = r’ /r ,  on a regular grid with a resolution length of Ar” = 0.1. 

Even after all this, the resulting profiles show considerable variety. This is 
consistent with the interpretation that the strongest influences on the shape of an 
individual vortex are the combination of the (random) initial shape and the shape 
changes due to synthesis with the particular merger partners encountered. However, 
a population average of the normalized profiles (([/&) ( r ” ) ) ,  taken over the 
stringently selected vortices, does exhibit a preferred shape, and furthermore this 
shape is approximately independent of time after an initial interval of At w 10. The 
average profile is shown in figure 11, where an additional time average has been done 
(for the times between 15 and 40 which are divisible by 5) to better expose the 
preferred shape. This shape is approximately Gaussian, except at large r“. This is 
made explicit by fitting an unknown radial scale a-a so as to minimize the error norm 

L = [; [ 1 -($$)TI, 
where rg = (k- 1) Ar“. We choose K = I1 with r i  = 1.0 (since L increases sub- 
stantially for larger K )  and obtain a quite small minimum value of L = 0.0109 for 
a-f = 0.801. This fitted Gaussian curve is plotted in figure 11 for comparison with the 
average profile. The uncertainty in the average profile (standard deviation divided 
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by the square root of the number of vortices in the average) is about equal to L,  
which indicates that the profile is indistinguishable from the Gaussian form. At large 
radius the average profile deviates from Gaussian by being substantially steeper. 
This feature is interpreted as a consequence of the loss of weak-amplitude, peripheral 
vorticity in straining interactions with other vortices. 

Why is the preferred shape for vortices a Gaussian one T We can interpret this as 
a consequence of diffusion. Diffusion alone is weak in its influence on the shape of any 
particular vortex (see above), except perhaps a t  times of order t ,  much later than 
those examined here, but its influence is systematic in a way that the more dramatic 
advective events are not, and thus its effects can be seen in a population average. The 
Gaussian shape is approached asymptotically in time under radial diffusion ; this 
property is exact for all radii for Newtonian viscous diffusion, and it is approximate 
for small and intermediate radii for hyperviscous diffusion (see the Appendix). The 
actual diffusion in coherent vortices, of course, is not axisymmetric and occurs 
primarily during intermittent events of large straining deformations. Nevertheless, 
it appears that continuous symmetric diffusion is an apt model for vortex profiles 
even in the complicated evolution of two-dimensional turbulence. However, a 
puzzling aspect of this explanation is that the accuracy of a Gaussian fit in figure 11 
is slightly better than it is for the asymptotic profile of hyperviscous diffusion (figure 
12, Appendix). Perhaps the more complicated real situation makes the particular 
functional form for the diffusive operator of secondary importance and the net result 
close to ‘classical’ diffusion (i.e. the Newtonian form) in turbulent flows where the 
diffusion is substantially shear-enhanced. In any event, under this interpretation, 
the elapsed time before the Gaussian profile becomes evident (At = 10) is that 
required for most vortices to have had several close interactions, hence to have 
experienced significant shear-enhanced diffusion. 

7. Summary and discussion 
The vortex census selects flow structures based upon the similarity of the local 

vorticity field to a single-sign, axisymmetric, simply connected distribution 
surrounding a central extremum of sufficient magnitude. The selection procedure is 
reasonably successful a t  discriminating between early times and weak extrema, 
where there are few coherent vortices, and late times and strong extrema, where 
almost all extrema are coherent vortices. The properties of the population of selected 
vortices have broad distributions, which arise through spatially local vortex 
emergence from the broad-band, random initial conditions. These property 
distributions evolve in time principally through the dynamical processes of mutual 
straining and deformation, axisymmetrization, merger, and vorticity diffusion. The 
evolution is towards fewer, sparser vortices, with the weaker members of the 
population more likely to be destroyed or absorbed than the stronger ones during a 
given interval. Among the surviving vortices, the average size and circulation 
increase (principally during mergers), the amplitude decreases, the deformation from 
axisymmetry decreases, and the radial profile approaches the Gaussian form within 
the core region where the vorticity has sufficient magnitude relative to the ambient 
strain field. Within the vortex population, these properties tend to be well ordered 
by increasing vortex amplitude : the likelihood of selection increases, the size and 
circulation increase, and the deformation decreases. Of course, for any individual 
vortex during any particular interval of strong interaction with other vortices, 
substantial departures from the population-average behaviour can occur. 

13-2 
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Among the previous investigations of vortices in two-dimensional turbulence, 
Benzi et al. (1988) is the one most similar to the present study in its topics. (The 
maximum Reynolds number and resolution of its solutions are also similar.) There 
the vortex selection criterion is the simple one of a threshold amplitude (i.e. y >, cmin), 
which is reasonably apt for late times. The ordering variable in analysing the vortex 
population is radius, in contrast to our preference for amplitude. Their principal 
hypothesis is that there are aspects of self-similarity with r for the vortices : vortex 
dynamics are independent of r ;  [ ( r ’ )  has a universal shape (normalized by amplitude 
6 and size r ,  with (6) nearly independent of r )  ; N,(r)  has a power-law dependence 
on r ;  and, consequently, the energy spectrum E ( k )  has a power-law dependence with 
an exponent of approximately -4.3. 

Our results differ in certain respects from the above, specifically in the non-trivial 
slope of ( r )  (6) (figure 86) and the absence of a clear power-law form for either Nv(r)  
(see figure 6) or E(lc). On the other hand, scale- and amplitude-independence of the 
dynamics are intrinsic properties of (1) and (2) as k, + co and vk: + 0, and it seems 
almost inevitable that an initial energy spectrum of power-law form would yield 
power-law distributions in the emergent vortex properties, although it is by no 
means clear that the power-law exponent would always be a universal constant. 
However, we have found some degree of universality in the population-average 
vortex shape (figure 11) .  Furthermore, we have found (but not shown) that the 
population-average vortex properties in our solution generally have a weaker 
functional dependence when ordered by size rather than amplitude. 

These differences have their origins in the initial conditions, specifically the 
relation between the initial E(k)  and the vortex population which emerges a t  early 
time. It seems clear, from examining many solutions, that a broader bandwidth for 
E(k)  yields a broader size range for the emergent vortices and that the shape of E ( k ) ,  
within the wavenumber band where its amplitude is substantial, influences the early- 
time distributions of N,, &, and r .  (This point is also made in the recent paper by 
Santangelo et al. 1989.) The solutions of Benzi et al. (1988) have an initial spectrum 
shape 

(22) 

for a small k,;  this has a much broader bandwidth than (4). A precise and general 
characterization of the relation between initial conditions and early-time vortex 
property distributions has not yet been achieved. Nevertheless, we believe that the 
evolutionary tendencies in the property distributions will exhibit the behaviour 
shown in this study, over a very broad range of initial conditions, hence of emergent 
vortex property distributions. 

Another unresolved issue is the role of coherent vortex generation through 
secondary instability of vorticity filaments created by either the enstrophy cascade 
or as interaction fragments (or filaments) between coherent vortices of larger scale. 
It seems clear that this process can occur when the cross-filament scale is large 
compared with the viscous scale and the filament vorticity amplitude is large 
compared with the ambient strain field. In  our solution almost all of the vortices 
emerge from vorticity extrema in the initial conditions, although some evidence for 
secondary generation of weak vortices a t  early times is seen in figure 6. Secondary 
generation seems to be somewhat more common in a solution with (21) as its initial 
condition, but still it is not the primary vortex generation mechanism a t  presently 
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accessible Reynolds numbers. This issue would best be investigated in even higher 
resolution solutions, with a very large-scale range between the size of the emergent 
vortices and the viscous scale. 

The National Center for Atmospheric Research is sponsored by the National 
Science Foundation. I appreciate discussions with Dr Jeffrey Weiss on the subject of 
vorticity diffusion ; in particular, he derived the asymptotic formulae in the 
Appendix. 

Appendix. Vorticity diffusion 
Consider an equation for vorticity diffusion : 

Q = pvzc-  VV‘V“, (A 1) 
It contains both Newtonian diffusion, with viscosity p,  and hyperviscous diffusion, 
as in the barotropic vorticity equation ( 1 ) .  It can be considered either as a 
linearization of (1) or as its axisymmetric limit, with 

y = [(r’,t) and V2 = 
r’ ar’ 

in either case, advection is trivial. 
For v = 0, a particular solution of (A 1) is 

Its amplitude decreases as l / t ,  and its bulk radius r (as defined in $ 4 :  the radius a t  
which the vorticity is a given fraction of its extremum) increases as t:. Its circulation 
r is time invariant when the vorticity integral spans all radii, 0 < r’ < 03 ; it is also 
invariant when the integral spans 0 < r’ < r ,  as in (18). Its normalized profile, when 
analysed as in figure 11, is also time invariant, and it is a Gaussian function of r’. 

The solution (A 2) is asymptotically approached in time for general initial 
conditions of a vorticity-monopole type, and in this sense it is the favoured vortex 
profile under the influence of Newtonian diffusion. This result is easily derived by 
making Bessel and Fourier transforms of (A 1) in r’ and 8, solving the resulting 
temporal ODE, and regrouping the solution as a series in powers of t-i. 

For hyperviscous diffusion (i.e. with p = 0 in (A l ) ) ,  the analogue to (A 2) does not 
have such a simple expression. From numerical integrations of (A 1)  with initial 
conditions of a vorticity-monopole type, it is clear that the amplitude decreases and 
the bulk radius grows with time here as well, but they do so with less steep functional 
dependences on time, compared to the Newtonian solution (A 2). The circulation r, 
integrated over 0 < r’ < r ,  is not time invariant; it is slowly growing with time, but 
at a rate much less than that of r2.  The leading-order asymptotic profile, derived as 
described above, can be expressed as a power series in a similarity variable (= 
r’2/4(vt)+; viz. 

where 
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FIGURE 12. Asymptotic profile for hyperviscous vorticity diffusion (A 3). The dashed line 
represents a Gaussian function of radius, e-0.435, such that the function values are 1.0 and 0.2 a t  
0.436 = 0 and 1 .  

where here only r denotes the well-known Gamma function and not circulation. The 
solution (A 3) has its amplitude decrease as t-i and its size grow as ti. Its normalized 
radial profile is again time-invariant : it is F ( c ) ,  with 6 K ( T ’ / T ) ~ .  F(5)  is plotted in 
figure 12. It is close to the Gaussian form for 6 values up to a little beyond 2. This 
range approximately spans the interval from the origin to [ = 2.33, where F = 0.2 
( = A ) .  For easier comparison with figure 11, the abscissa in figure 12 is lJ2.33 = 

0.436. 
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